NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS
,JUN - 1944

TECHNICAL MEMORANDUM

No, 11565

ON THE PROBLEMS OF CHAPLYGIN FOR MIXED
SUB- AND SUPERSONIC FLOWS
By F. Fr?.nkl

Bulletin de I’Academie des Sciences de L’URSS

B

g Washington
& , June 1947

ey

NAaca LIDRARY
LANGLEY MEXNORIAL /\ERONAUTICAL
LABORATORY

‘ \ Lﬂnzley Fiewd, Va,




P -

— B T T e e
e P T T T N

e R

T

4
i
'

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

a—

TECHNICAL MEMORANDUM NO. 1155

ON THE PROBLEMS OF CHAPLYGIN FOR MIXED
SUB- AND SUPERSONIC FLOWS®

By F. Frankl

There are investigated the problems of the flow of a supersonic
Jot out of a vesgsel with plane side walls and the problem of the super-
sonic flow about a wedge when there is a zone of local subsonic veloc-
ities ahead of the wedge.

INTRODUCTION

In the present paper it is assumed that the reader is acquainted
with the work of S. A. Chaplygin ("On CGas Jets" (reference 1)) and with
the method of computation of plane-parallel supersonic flows given by
Prandtl and Busemann (reference 2, see also references 5 and 6). There
is recommended a preliminary acgquaintance with the work of F, Tricomi
"On second order partial differential equations of mixed type" (refer-
ence 3) whose methods undoubtedly will be capable of being used in
proving the existence of the solution of the problems considered by us.

Since in what follows we shall everywhere make use of the notation
of Chaplygin we shall here present the formulas and notation of impor-
tance to use. Chaplygin makes use of the method of the hodograph. As
the independent variables he chocses in the first place the nagnitude

2
T= (1)
Vm

where V 1s the flow velocity at & given point, Vp 1s the maximum
velocity corresponding to the stagnatlion temperature To (that 1is,
the temperature arising in front of an obstacle in the flow) char-
acteristic for the given flow; V, 1is given by

where J 1is Joule's constant, g the acceleration of gravity, Cp
the specific heat for constant pressure, and Ty the absolute

*Bulletin de L'Academie des Sciences de L'URSS (Russian) Vol. 9,
1945, pp. 121-143,
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stagnation temperature. The second independent variable ie taken to
be the angle of inclination of the velocity 6. Wribtten in these
independent variables the stream funchtion ¥ in the case of irrota-
tional flow satisfies the equation —

21 __ ol l“(ZBJrl)TBZW_O (3)
T i(l )B a'rl 2 (1 - )B+1 ae
where
B =iy (32)
and
5= 2 (5b)

the ratio of specific heats at constant pressure and ccnsgtant volume,
regpectively.

The value

T= 5t (4)

corresponds to the critical velocity; that is, the velocity of the
Tlow equal to the corresponding local sound velocity.

Oun introducing the auxiliary variable

Azpa)

TEzEe

equation (3) assumes the form

2 .2
AN R (6)
o 30

where
got=(2 1)1 (7)
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Thus, equation (6) for subsonic velocities will be of the elliptic
type and for supersonic Veloclties of the hyperbolic type.

-4 e 2l

Chaplygin further considers particular solutions of equation (3)
of the form

1

Yy (T,7°8) = 2y (7) sin 2v8 (8)

where

R D L R &

zp (1) = 1%, (7) (9)
and y, (1) 18 the hypergeometric function

¥ (1) =F (ay, by; 2v + 15 1) (10)

where

apy + by = 2V - B, apky = — pr (2v + 1) (10a)

In the theory of Chaplygin an important part is also played by
the auxiliary function xy (T)

Xp =1 4 = —2% = o — (11)

The problems considered by Chaplygin for flow velocities remaining
i everywhore below the wvelocity of sound reduce to the problem of

| Dirichlet and are solved with the aid of series combined from the
special solutions of the form (8). To what boundary problems for
equation (3) the problems of Chaplygin reduce for mixed sub~ and super-
gonic flows remained unknown. Basing himself on the work of Tricomi =~
(reference 3), the author has succeeded in finding a formulation of

| these problems and to gstablish the uniqueness of their solutions.

In what follows the author hopes to glve a methematically well
founded and practically suitable solution of the problems stated.
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I. REDUCTION OF THE PROBIEMS OF THE FLOW OF A SUPERSONIC
JET TO THE FROPLEM OF TRICOML FOFP THE EQUATION CF
CHAPLIGIN UNIQUENESS THEOREM FOR THESE PROBLEMS

The problem of Tricomi is the following: ZILet there by given a
linear partial differential equation of the second order which on one
side of the curve C in the plane of the independent variables is of
the elliptic type and on the other side is of the hyperbolic type.
Let us consider the region D bounded by the curve L 1lying in the
elliptic region with its ends lying on the curve C and with the
characteristics x; and Xy belonging to different families and
gtarting from the ends of the curve L (fig. 1), ILet the values of
the solution be given on the curves L and x; but not on Xp.
There is sought a solution in the region D.

This boundary problem was Tirst formulated by F. Tricomi (refer-
ence 3) as applied to the equation

4 2.
y £+ LLoo (1)
ox“  Jdy

Tricomi proved the unigueness and existence of the solution of
this problem. In this section we shall reduce the problem of the
flow of a supersonic Jjet to a certain problem of Tricomi for the
equation of Chaplygin (see introduction equation (6)):

2., 2
O k¥ .o (2)
3a° 3%

The coefficient K for small T or large ¢ 1is equal to unity
and drops with increasing T (decreasing o). For 7T = (1 + 28)-L
(or 0 =0) we have XK =0, and for T> (1 + 2[3)'l (or o< 0)
K < 0, Thus equation (2) is of the elliptic type for ¢ >0 and
hyperbolic for ¢ < 0. We shall first prove tle uniqueness of the
solution of the problem of Tricomi for eguation (2).

Weo consider in the plane (6, ¢) a finite region boundad by the
curve ABC 1lying in the half plane 0 > 0 and the characteristics
AD, (D, lying in the half plane o< 0 (fig. 2). We assume that
in this region the solution W __of eguation (2) is taken equal to
zero on ABC and on  CD. We shall show that this solution is equal
to zero over THS BHtire region.
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We conslder first the solution in the triangle

and will show
that

30 (3)
We transform the equation

o BZ\U az¢)
O x| S“ZFlaoc a8 = 0 (4)
,J J‘\l! <aoz I ‘ 36°

ADC

by integrating by parts. We have

~0
2 U
] Vi Vs
0

6o 2
e v
2]

1

~
91
- Yol dac
0 e)
0

> (5)
9
92 — | (.a_\l.{z dae
o )
1
vy )

Hence

s 3%y A VY 1| QU
O=J\J\W<B‘E§‘{Kla—5§)d9dc=J\p “ga_de—'l{lé-e—dc)—
ADC DA

AP 2 0

_f[{(g.‘_g _|K!(%‘§" ]dedc+} \llg-\gde (s)
ADC Joooo 0=0
Along the characteristic DA we have
40 ~ «/lK[,do =0

(7)

a0 = 22 a0 = /K| d0

- JIE
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Hence
fﬂl@ide |K§ o> fJIKNJ a“’do+—-‘E \
) Y] /
DA
.—_f.,/[KI\IJd\u:--N/IKI %fg—“éé—f{lﬂlz‘dd (8)
e —J Omin DA
=0
so that

f K%f - | x| @l—jﬂde o

(9)

We now compute dggK
ikl | _L_ elK (— U, T 2p (2 + 1) 1 _ 4
" 2/ 4T\ (1-n)F (1 - DT (1 - 7)2PHE

(10)
Thus, to prove the inequality (3) it remains to show that

f[l: -IKIKBQ)IdGo.O (11)

ADC

To prove this we ghall transform to characteristic coordinates:

an = a6 + VK] do_]
_ (12)
dp = a8 — /K] dcj

from which we obtain the Jacobian determinant:
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D (A, u) -

peckl = ~ 2./ 13
518, o) e/ K| (13)
Differential equation (3) becomes

2y aJ/TE|(ov v

Rl st T S m 5 = © (1¢)
On the other hand
2 \ 2
WY g (Y L a2
<a—6> ]K](ae) = - ¢RI (15)

or

==
O/IO/
Qe
=
TN
JlQ/
D=
\'/go
| A |
o
D
[N
Q
fl
|
PR )
>
—3
-
A
|/
>
]O/
T =
oy
>
[
=
-
oyl
®

where the integral on the right is taken over the area C'A'D' (fig. 3)

To compute this integral we rewrite equation (14) in the following

form:
/30 a¢> %Y
/ e - e
II’H\a\ S M (o )axau (16)
E where
§ 3/2
& M lo) < AIRD 16
\O') d\/lKl ( a)
dc
Then
C™ = DU 3V e (U A
J WV la—}\a—dxdu_JJ !K!(a-;> d?\du+ﬁ S Saor oM
" 1 aM /axy) < > A=u
= ! K - ———— =-){ z— aA du 5 du =
ﬁ ’M— -7 9\ ¥ J .

= 1 aM\/avy
=ff<~\/'K\ ~ ;‘-—-——T—K_i- E\a—“— aa dp (17)
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aince for small O
M =0 (%) (17a)

and for continuous JV/de, /oo

g‘};’ -0 (lol"Y/2) (17p)
A
On the other hand,
TE - —L @ ey B Bll:__g_ (18)
4 yTE1 %0 B (23 +1)7T

This expression is negative if over the enlire triangle ACD
~— (19)

The sbove inequality expresses ths fact that the Mach number M should

be less than 2; for, with T = ;~§-»
2+ B
- ! -
Y S L R £

This means for K = 1.4 the base €5 of the triangle mnst satisly
the inequality

8y < 6 = 54° (1.9v)
Whether this restricting condition for the proof of the inequality (3)
is essentially required or whether it is cnly connected with our

method of proof is as yet vnclarified,

Tet us now consider the region ABC. By integrating by parts
we obtain as above:

*The proof remains valid for any equation of the form (2) where
X ig a regular function of ¢ for ¢ = 0 and dK/dG >0 for o =0
and K(0) = 0, provided that ¢ in the triangle ADC remains suffi-
ciently small. As applied to equation (1) the proof remains valid for
any size triangles ADC. The same 1s true of the proof of the unique-
ness as a whole,
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LY e \ 2 T 2—'
- { <§*— + K <§\1> de dc (20)
‘?‘uac 1 \3o,/ 08/ |
whence
6
0
W
v 46 < 0 (21)
\';O ko‘ O:O
and taking account of ineqﬁality (3)
feo Qy
W SE dg = 0 (22)
0=0
0

From equations (24), (22), (11), (17a), and (19) it follows now that

V=0 (23)

as was to be proved.

The prool of uniquencss here given is applicable under the con-
dition that the transformations encountered ars valid. This com-
pletion of the uniqueneas proof we shall give after investigating the
properties of the solution of our problem.

Let us return to the problem of the flow of a supersonic stream.
We consider a vessel with symmetrically arranged walls forming an
angle 26° (fig. 4(a)). We assert that for a sufficiently small
external pressure the problem is reduced to the following problem of
Tricomi: In the region OA'B'C (fig. 4) a solution V¥ is sought
under the conditions:

-2 on CA'B!'

O g
17 W 3

]

(24)

2° ¢y =0 on OC
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Simllarly on the boundary of the region O0ABC we mnst have

1° V¥ - Q on caB|

2 J
( (24a)
0 on oC J

it

r
€
n

The obtained sclution gives a wapping of the region OCA'B!'CBAO
in the plane (%, y); thereby are oblained the region of subsonic
velocities, the curve of sound velocitlea, and the part of the super-
sonic stream touching this curve. The continuation of the supersonic
stream to infinity is obtained by the methcd of Prandtl and Busemann
(reference 2).

We now proceed to prove the ahove statement. According to the
conditions (24) and (24a) the walls of the vessel ccrrespond to the
radii OA' and OA, and the axis of symmebtry of the vessel to the
radius 0OC. As regards tlhe characterlstics AB and A'B' there
corregpond to them in the (x, y) plane the points A and A', the
opening edges of the vessel. TFor, i clong the characteristic of
equation (4) the stream function V¥ iz constant, the potencial @
is likewise constant (veference 4, section I, formulag 1.15 and 1.18).
But if along & certain line @ and W are constant, then the
coovrdinates x and Yy are also consbant. It remaing to show that
the obtained {low may be continued in the form of a stream with con-
stant vressure (constant velocity) on its boundariss. Such contin-
uation is possgible if the vatio of pressures Pl/PO is less than
(not equal to) a certain function »f the anzle @:

p iy
-1 < 3 _ o (69) (Pg — pressure at vcint B) (25)
Po " Po

We give below a table of values of thig function:

e} O 770 o o} o

9o = 10° 20° 30° 40° s50° 54
£ (8y) = 0,33 0,26 0,20 0,17 0,14 0,13

i1

Let us conslder first the case pg = Py We draw the arc of a

circle BB' with center at the origin of coordinates, and prolong
the characteristics A'B' and AB +to their intersection D,

We now find the solution V = Wz of the equation of Chaplygin
in the triangle B'CB passing along tle characteristic CB into the
previous solution W =V, and equal to (+ Q/2) elorg BB'. Further,
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we £ind the solution V¥ = WS in the triangle BB'C passing into the
solution V¥ =Y, along CB' and equal to (- Q/2) along B'B.

- Further, we find the solution V¥ =V, in the guadrilateral CB'DB
pessing along CB into Vz and along COB' into Vp. Continuing,
we find the solution Vs equal to Y, along B'D and to + Q/2
along B'B, and symmetrical to the latter, the solution WG equal to
V¥, along BD and equal to (- Q/2) along BB'. We then find the

solution V7 equal to Vg along DB and equal to Vg along IDBY,
ete.

The regions in the plane (x, ¥) corresponding to these solutions
] are denoted in figure 4 by the corresponding numbers. Thus we evidently
§ obtain the flow with pressure pp on the boundary.

If the pressure in the outer region is less than pp we proceed

3 as follows (fig. 5). We draw the arc of a circle EE' with radius
corresponding to the pressure p; < pg. The points E and E' must
lie on the prolongations of the characteristice AB and A'B'. The

| intersections of this circle with the prolongations of the character-

i istics CB &nd CB' we denote by ¥ and F'. We draw finally

f through T and F' the conjugates of the characteristics Intersecting
L in the point D on the axis of u.

We now find the solution V5 in the quadrilateral CEEF' that
passes into Wl along CB and is equal to Q/E along BDF'; then
the solution WS in the quadrilateral CB'EF that passes into Wl
along CB' and is egual to (-Q/2) along B'E'F'. TFurther, we find
the solution V4 in the qualdrilateral CF'DF which passes into Vs
along CF' and into Vz along CF. There are then found two

solutiona in the triangle FF'C, etc. as was shown in the previous
case. We thus obtain the flow with the constant pressure ©p; < pp
on the boundary.

To prove the existence of a steady continuous supersonic stream
flowing out of a vessel it is necessary only to prove the existence of
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the golution of the problem of Tricomi¥®. A strict proof of eristence,
as has already been said in the introduction, has not yet been obtained
by us. The fact, however, that the solution of the problem of Tricomi
for equation (1) exists and for equation (2) there bhas besn shown the
unigueness of the solution makes it appear probabie that the solution
of the problem of Tricomi for equation (2) likewise exists.

It should be ncted, however, fhat the proof of uniqueness was
obtained only for the vaThes 6y < 54° If this corresponds to the
acbtual state of affairs and if the ex1s+ence of the solution were
establighed only for the values 06, < 54° this would mean that the
flow out of a symnetrical infinite vessel with straight walls is
possible in the form of a steady continuous supe”son"c flow provided
these walls include an angle not larger than 108° The assumption is
here made that for 26,5 > 108° gupersonic {'low w1thout density Jjumps
(shock waves) is impossible. It vould be interesting to check this
assumption experimentally.

With regard to the obtained solutions the curves of the velocity
of sound start from the edges of the opening. It is to be noted that
for p = pg there correcponds to the characteristics A'B' and AB
one paint of the plane (x, y), namely, the edge of the opening and
this is also true for the case py;<pg with the corresponding char-
acteristics A'E' and AE. This means that the flow in the neighbor-
hood of the edges of the opening has the character of a Prandtl-Meyer
flow (reference 5), that is, the character of the flow about a corner
with expansion. The angle of inclination of the boundary of the jet
as compared with the direction of the wall should be not less than

65/2.

The flow within the vessel, since it is entirely determined by
the solution Wi of 1lhe problem of Tricomi, does not depend on the

outside pressure py provided py < pg. Hence the quantity of air

*This proof must ol course be completed with the proof that the
Jacobian D(x, y)/D(u, v) or the magnitude RURG)E + K(MV/d6)2
for each of thes solutions Wl, Vo, . . . has a constant sign. Other-
wige the components would not be unique functiones of the coordinates.
In this case there would be expected the appearance of densivy Jjumps
in the flow. It is not difficult to show to which types, according to
Christianovich {reference 4) the flows considered belong. The flow
Wl in its supersonic part and also the {lows Wg and W3 are mixed
flows, the flow V4 is a Flow ol rarefaction, the Ilows Vg anad Vg
are mixed flows, the flow V; is a flow of compression, etc.
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per second likewise does not deprend on py as entirely corresponds

to the well known experimental facts.

By the above indicated methods it will not, however, be possible
to find a solution if

5

K1

—L D > > (26)
K+ 1 Po > Py > Pg

In thls case the problem is reduced to a boundary problem which
is a generalization of the problem of Tricomi. The solution is
sought in the region OCD'B'A', vhere A'B' and CD*' are arcs of
the ollipsoid of Busemann and B'D' an are of a clrcle corresponding
to the given external pressure. The points O, A', C' are the same
as in figure 4(a). The boundary conditions are the following:

Y= — % on OA'D'B!

(27)
B ¥ = 0 on OC
The uniqueness of our solution has not yet been proven dbut is
K
vK-1
very probable. In the limit for p = p* = En:—T) Py the above

boundary problem goes over into the Dirichlet problem and its solution
into the solution of Chaplygin.
IT. REDUCTION €F THF PROBLEM COF A SUPERSONIC FLOW ABOUT A WEDGE
IN THE CASE QF THE FORMATION OF A SUBSONIC ZONE AHEAD OF THE
WEDGE .TO A BOUNDARY PROBLEM FOR THE EQUATION OF CHAPLYGIN
IN AN INTTTALLY KNOWN REGION OF THE VELOCITY PLANE
THEOREM OF UNIQUENESS FOR THIS PROBLEM Rt
In the cawse here considered the entropy behind the density.. jump
is variable. 1In connection with this in the equation of Chaplygin

Tor the flow there appears a part on the right side proportional to
the deriwvative of the entropy with respect to the stream function
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(reference 5). In wiat follows we shall neglect this right part, as
also in generasl the variability of The entropy. The flow then rcmains
potential (reference 1) and the equations of Chaplygin remain in force:

P _ _o¥
36 oG
’ (1)
99 _
3¢~ T e
v
%y 2% ‘
’3—02"+Ké‘é;=0 (2)

The problem of the low about the wedge can now be reduced to a
boundary problem in the regicn OABDE of the plane (u, v) (fig. 6).
In this figure OA 1s a segment of the u axis, AB 1is the arc of
the strophoid glving the velocity behind the wave front lying within
the circle of the subsonic velocities. The eguation of this strophoid
(reference 5) is

L _a®
v2 Vl
2'_‘ 5 (3)
(v =) 2 v + 2 -y
KR+ 1 'L A

Bj) and ED are arcs of the characteristics (epicycloid), B
and E 1lying on the circle of sound velocity, and COE 1s the radius
making angle 6y where the latter is the angle between the sides of
the wedge in the direction of the approaching flow. The boundary con-
ditions are:

A=
il

0 on ACED (4)

'Llllf

Vg at point B (s)
vhere Vg 1s assumed given.

On the arc of the strophoid there nmust be satisfied such con-
dition as would assure a continuous change in the stream fundtion on

passing through the wave front.

The correspnnding transformation of the (u, v) plane into the
(x, y) plane is shown in figure 6. As in the previous problem, to the
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characteristic ED corresponds a single point E-D in the (x, y)
plane. At this point_(corner at the base of the wedge) there arise
flows of the Prandtl-Busemann btype. The continuation of the flow
beyond the Mach line OB is not of interest since it has no effect
on the flow in front of thisg line (this continuation may be deter-
mined by the method of Prandtl-Busemann).,

Under these conditions there will evidently be satisfied in
the (u, v) plane those boundary ccnditions in the (x, y) plane,
which are a consequence of the formulation of the problem of
Chaplygin*, The value of \DB is proportional to the height of

the wedge. It remains to render more precise the boundary con-
ditlons on the arc of the strophoid AB.

Let py be the density 1n the undisturbed flow and A the

angle of inclination of the density jump at an arbitrary point
filg. 7). Let V1 ©be the veloclty of the undisturbed flow, no

the density at a stagnation point. We rscall that pOdW gives the
diff'erence in the diachargs at two infinitely near points. Then
along the discontinuity

pod¥ = pVidy (8)

On the other hand (refersnce 1)

n o i
dy = gid\U+T"CP ocsed\ll E’in—QGEdoJra——‘-)de>=

P o v 30 36
_ PO cos 6 sin 6 oV ow >
= e+ 22 (Ké—e-dcs-—aode (7)
From equations (6) and (7) we have
1 cod 6 gin 6 W U
-~ ab = 2R 8 [ ¥ 45 _ X 30 8
<pr1 o7 > V= S <K 56 %9 " 36 ) (8)

Further (fig. 8)

*Of the conditions which are satisfied on the wave front we
have rejected one. This, however, is unavoidable since we have
neglected the change of sntropy.
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Vy cos A =V cos (A =8) = Vg4 (9)

(that ig, the tangential velocitles do not clhiange on passing through
the discontinuity) and

pVy sin A = pV sin (A - 6) (10)

(that is, the flow discharge does not change in passing through the
discontinuity) (reference 1). Hence

;v _ COBVQ - 1& <} _ sin_jéggég%ﬂgpg_Q> (11)
011 f PV /
and
N
VL1 _cos 8 _
gin 6 \Plvl NV
1 cos A /1 _sin (N —6) cos 6) _ ctg A (12)
py sin 6 cos (N =06) \ sin A\ T o,
Hence the boundary ccndition (8) becomes R T - T TIPS
S\ Os
Kégdo—g—\—'d9=—actg7\d$ (13)
o L) 3o Py

Since along the strophoid 6 is a known function of © the equa-
tion (13) gives a homogeneous linear relation between oW/d6 and

V/dG.

,]’ We shall now show that the conditions (4), (5), and (13) deter-
mine the solution of equation (2)_in the region OABDE uniquely, or

i
of

in other words that ihe homogeneous conditicns (4) and (13) determine
the stream rvnction except for a constant factcr. For this purpose
it i1s necessary and sufificient to show that tre sclution of equa-~
tion (2) satisfying conditions (4), (13), ard (5), ¥{B) = 0 must
be identically eqral to zero. To prove this it ls sufficient to show
that from the satisfying of the condition (4) along A4OF, (13) along
AB, and (5) at the voint B there {cllcws

j v Mag< o (14)
Ja
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where the integral is taken along the line ¢ = 0. PFor, in section 1
it has already been shown that due to the satisfying of the condi-

tion ¥ = 0 along ED¥
'H‘
J \{/qude (15)
B

and that from (14) and (15) we have
V=0 (18)

We shall prove inequality (14). We have:

/az\v g O AT
[[ de/ d@dc:—J\, <55> /\39 a6 a0 +
v ) /
+ ’%‘\V (E\. g—e- do - 56' 69/ = —J ’ {(58 + K¢ ] d6 40 +

“ ,—.E
o) \
—)E%/ctgh-\bd\ll—\j JJB—*jd@ (17)
AB B
Hence
3V 4y . S\E L aUYE Po
E\Uégde_~ff[<gs +K<a—5—dedo+:—,——— sinzkso
(18)

*It 1s here necessary of course, as in section 1, to assume that
at the point D M <2 (or that the central angle of the arc B 1s
less then 54°.
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which proves the uniqueness theorem*.

Since there was here assumed the validity of the transformations
glven it 1ls necessary to supplement this proof of uniqueness by a
proof of existence. To the problem of existence and the effective
method of finding of a solution we hope to return later.

If the pressure behlnd the wedge is greater than the pressure
at the point D (fig. 6) the region in the plane of the hodograph
and the boundary conditions vary in the same manner as in the case
of the flow out of a vessel (seo remark to section I).

III. TWO IEMMAS TO THE THEORY OF THE EQUATION OF CHAPLYGIN
PCOSSIBILITY OF APPLICATION OF SERIES OF THE
TYPE OF CHAPLYGIN TO THE PROBLEM COF .
A SUPERSONIC FLCW FROM A VESSEL
In this section we shall prove two lemmas to the equation of
Chaplygin which we intend to use later for a proof of the existence
of the golution of the problem of Tricomi. The first of these

lemmas is an asymptotic formula for the logaritlmic derivative of
the function zyp(T) of Cheplygin (see introduction, formula (11))

Tor T= (28 + 1)1 and large v, namely

() ,
AV 3 o®3 0 () (1)

where C 1is a constant independent of vV and the symbol O (1)
means a bounded magnitude.

*The proof ol uniqueness is applicable only 1f the central angle
of the arc BE is less than 54°. Tn this connecticn there is also
obtained the restriction for tne angle g, {fiz. 6). The limiting
angle BOmax depends on the Mach nuuber of <the approaching stream.
For M =1, Oopax = 54°, Ffor M = o, 80max = 99°. The question
as to whether this limiting angle has physical significance still
remains open.
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In preparing the paver "The Theory ©f the Iaval Nozzle* for
publication we were able ic render this formula more accurate. We
obtained an asymptotlic formula for large V:

z', |

v . 2/3

E;r . = Cy + CO + CIU
1T=2p+l

2k _ 2k+2)
-2/3+. 3 b 3

In the case 7T = (EEJ:—TT this formula is involved in an
inequality proven by Chaplygin, namely, the inequality

]
.

2

V

2V

where

and

We now proceed to the proof

tion zp(T), the function

/ /l ~ 28 + 2[382 ’ﬁllg——(—]:-—-—“—)——

2 (142
>xv>/\/l -—2[35+BS v(+'1L 8)
(2)
'y 12y
5;—;—: -52-1—)— (25.)
T (2b)

o (1). By detfinitin of the func-

Yy, = zyp(T) sin 2v9 (3)

satisfies the equation of Chaplyvgin. If we replace the variable T
by the variable O (reference 1, section V, formula (91)) then from

tlie equation

2 2
™ Y
—% + K =5%=0 (4)
Ao 06
there follows
t", (o) — 4Kl (o) = 0 (5)

where

gu(O) = Zu<T) (53)
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We recall that
z2(T) = TVy,(T) (8)
where YU(T) 1s a solution of the hypergeometric equation
T(L=-7) 5y, + v +1+(B-20-1)7] 5y +Bv(2v +1) 3 =0
(7)
regular for T = O.
Equation (7) has a second independent solution of the form
72 (1) = 1B, () (8)

0. Therefore equation (5) has a

where g(T) 1is regular for T
gecond independent solution

602 () = 203 (1) = 17Vg() (9)

From the formula for the coetrficient K (section 1, formula (4a))
it follows that near O = O

K = a0 + b0° + . . . (10)
where
3B+1
o =2 (Z—G—tl) (108)
\ 28

Since for T < (2B + l)_l (or 0>0) X 1is bounded, it follows from
equation (10} that

!K-aol<]302 for 0> 0 (11)

In differential equation (5) we now replace the coefficient X by
its approximate valus equal to aO. We obtain the equation

Z"v ~ 4v°agly, = 0 (12)
where @U(o) isg that solution of equation (12) which for o= (T—0)
approaches zero and which 1s equal to @v for ¢ = 0. This solution
has the following form (reference 3, section ITI, formula (12)):



g

}
'
'
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- 4 0
ulo) = A (n‘?/év?ac )%"(@% (13)
where
ool -j: ‘-]_- 5 _ \
AE) = e AL cos <§-+ 3§§ ﬁe) dp (14)
0

For what follows it is of jmportance that the function A(£)
for any positive m saticfy the inequality

A8 < &5 (> 0) (15)

n
We now denote ty Sﬁw the function
8y = Ly - &y (16)
This function satisfies the nonhcungeneous differential equation
(58,)" ~ 418l y = 481 (c) (17)
where

£(o) = (a0 ~X) {y,(0) (17a)

According to the general theory of homogeneous linear differ-
ential equatiocna there follove from (17)

2
otulo) = 84176 [ 201 t000) a0 4
0

+ c(z)v(c)u/“” (o) gv(o') dc:\ + Clgv(G) + CZQ(Z)U(O) (18)
(o)

J

¢, L2

where
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It is easy to prove that
Co =0 (19)

In fact, for emall T (large O)

£(0) = 0 (1), t2), 20 (v, a0 = ~§T0 (1)
(20)
£(c) = 0 (62) = 0 (1n7) = 0 (17°)
where € 1is an arbitrarily swall guantitvy. Thus
~0 (1428)-1 '
[0 t60) a0 -[ o (x'U G ar (a1)
T

o T
‘ - e - -
| £(0") tyle") ac' f o ("¢ Ly ot =0 (177 (z2)
Jgo o)
From equations (15), (21), and (22) we have

8C,(c) =0 (17%) + cgé(z)v(o) (23)

Hence if Co £ O then

lim 38,(0) = @ (23a)

(O =]
which contradicts the delinition of this function
We shall now compute C;. We have

, 2 "
5Ly(0) = 1@ (0) | £(0") tylo") o’ + 0rLy(0) = 0 (28)
\IO

whence we obtain for the constant:
— _41’“ v s t & 5 1 .
C1 = - 1) £(c") {y(0") ac (25)
O

Nee]
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and for the derivative 8§‘v(0)2

2

,’5§lv(o) - 4Z C(Z)'v(o)j\ ”f(O') t,(o") ac'S &+ Clgv(o) -
o

Ao

4 ¢ H i 1
= - z—v%)\lo f(G ) gv(o' ) dact =

= - 7\-(—0-)- <./4v ac!’ >(a0 - K) §. (') ao'

0]

go that

~00

£, (0) A'(0) 4P
Ziﬁ'=y;- ()—A&)

~/

However, according to Chaplygin (reference 1, vol. II, p. 30)

Py

gvo

<o 0<T< (1+2p)°t
B LY = or =5 = +
£(0)

(or 0 < )

ence

Lylo")

A <v/4:avzc'>(a0 K) Tz——y dc’

23

(26)

(27)

(28)

~co — g (o‘l B 2
My/2arlot)(ac' ~ K) ac' () £ 4
.JO * 0 : 30 jo (2av2)273 (4av2)/3

1
=0 -
(172)
Thus according to (27)

P

-~

ST

(30)
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which proves formula (1).

The ccmputation of the magnitude A'(0)/A(0) from formula (14)
and the known properties of I' Tunchions gives

A(O) _ (8 S/
A

(302)

The second lemma is a conszeguence of “the flrst and may be stated
as follows: Iet W De a bounded solution of equation (4) defined iun
the region

c>C, 0< 6<6 (31)

Let the limiting values for 6 =0 and 6 = 0 he

0 (22)

V(o, 0) = ¥(c, o5)

Then there exists a kernel X(9, 8') nct dopending on ¥ the prop-
exrties cf which are determincd by the eguation

(9, ') = A1 -~ 611°1/5 _ (6 4+ 0)" /3 _ (0 4 o - 205)"1/3) 4 0(1)

which peruwits expressing the boundary values of ¥ on the exc 0 =0
in terms of the boundary values of oOV/O0 for O = 0 since

neo
V{0, 8) =J’O (9, 6') U (0, 6') d6" (34)

To satisfy egvation (34) it is reguired merely that the square of the
function V4(0, 8) be integrable.

We shall now prove thig. We compute first the lLernel K(G, o)
assuming that it exists. TIn the darticular case

Lp(o) -

——T')‘ sin 2v8 (Su)

we have
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\IJ 1
:T” = %ZE-C{;— gin 2v6 (36)

We introduce the notation

3 = 5%0— 6 (37)
¢ ,(0)
M = Loy (38)

Equation (36) may then be written in the form

6
U, {0, 8) 0
U,(0, 8) = .25’.‘7_3-_~ = K(6, 0') Vps(0, 6') ao (39)
‘n 0
or
29O [ﬂ/u gin 2n
— K(A, 6') sin 2nd'ddr = 222 (40)
T ’ ?\
._/O
whence
o
2 N sin 2nd sin 2nd’
K(Q ') = — (41)
% 4. An
n=1
It remains to investigate the convergence of this series.
According to equation (30)
Ap = S%) 1av? [1 +o(n‘2/“’)l (42)
\
ESN ()N {; + 0(n~ 2/3)} (42a)

A A(0) 3 2av?

whence
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oo
2 MO gin 2nd sin 2nd’
k(e, ') = o< "““‘”i—): "" 12/3 = 4 \
O AT (0)¥4a £ v
n=1
=
+ 2 s8in 2nd sin 2nd O(n‘é/‘%) (43)
n=1

The second of the series on the right converges uniformly and tlie sevies
(o]

o o
\t;ﬂ sin 2nd ein 2nd' 1 ‘eoog dnf(v ~ 'y 1 . cog 2n(d + 9')
< . n2/3 2 ., n2/3 2 ., n2/5
n=1 n=-1 n=1
(44)
may be sumped in explicit form.
It is sufficient to consider tlis seriega
o0
/‘ _—?T}Tg—- 1 7{ OJ CP 7{ u]‘t) (4:-3)
L 11
n=1
From the known foimula for the I'-funchion
fab)
[ et 2L 4y = T(2)
JO
we have
/2 20 l =z + o0
F(:_ynfz/s eDi® =k/ x—z/a o -n(x-1i?) ax (46)
3 )
N s 6]
whence
[wa)
~ . A . ~xri®
T ?' > n-2/3 enltp = ’ X‘l/o ~£~—“—~c=s dx (47)
3 , j XA
L 1l —e¢
n=2 /0

Formula (47) is obtained from (48) by summing the geometric series
taking account of the fact that
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o<op<k
]l — o~%+1P)| > sin @ for 5
-2’1 <P < 2n
L
1~ 6% < &in® ror F< <§§“—
and therelore
[o] L2
1/3 _MEH) 1 LB e
1 - e—XHﬁP < {sin P -
(0]
r(2
IElnscpl n2/5 50 for ¥ —0
or correspcendingly
i SN ( -x+i®)
1 -x+i o -2
/5 2 -‘{+1CP < \N 2/
o 1

Taking the real part of formula (47) we obtain the required sum of
series (45):

) E Y cos nf / (L3 e cos® - em2x ax  (48)
P\ /5 Jo ) 1 -2 cos® + g~2%

We proceed to the investigation of the properties of the function (48)
: for =0 and P = 2n. It ig sulficient of course to investigate
‘ the function (48) near ® = 0, We have:
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[e]
¢ . X N —
( —\- cos nP _ -1/3 eX cos P ~ 1 dx +

4 2;3 1 * 82X _ 26 cog @ 4+ 1

1

N <-1/3 (;. + %) cos P -1 ax + 0(1) =
o (L+x)" —2(1 +x) cos P+ 1
\l ‘:P
- X_l/3 g% + X) cosg ~ 1 dx + O(l) -
(L +x)" ~2(L + %) cos @ + 1
C
1 y -cp'.1,/3
2/3 = 4
= [ ’-‘-z-—i’-‘- +0(1) = == 2 4z | o(1) (49)
W 4 P J/® 28 + 1
<0 0

The last integral is most simply computed with the aid of residues®.

Further,

~et/5 ~1/3
z=dz

25 + 1
v 0 0

zédz 3
26+l

-5
-z

%{Z_Jbg [e-n1/6 | o-ni/2 | ,-5ni/6] | o(wL/3)Y - 21 + 0(0l/3)

-

(50)

(The first terms come from the residues, and the term O(\Pl/S) from
the integral over a semicircle of radius P~ / )

*For this remark which greatly simplifies the preliminary deri-
vation the author 1s indebted to A. Nikolsky.
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Thus we have finally

_ o . .
P(§>'\\_ cos nP =« + 0(1) (51)

L3028 T Y Y -

n=1

which gives for the kernal KX(6, 6')

A(0) 1 V1=1/3 1\-1/3
K(e, 61') = e - o'l - (6 +8") -
Ny n (o aF |

-

~ (205 — 6 — e~)'1/3}+ o(1) (52)

That the obtained kernel K(G, 6'} actually expresses the
boundary values of W(@, 0) in terms of W,(6, 0) 1is established
first in the case where WO is expressed through a finite trigono-
metric series and in the second case by passing to the limit making
use of the respresentation of W in the form of the Chaplygin series.
Thus the second lemma has been proved. A similar lemma has been
proven by Tricomi for the equation

, e, 2
ax° ¥y
It plays an essential part in reducing the problem considered to an
integral equation of Fredholm of the second kind.

We now proceed to the question of the possibility of representing
the solution of the problem ol flow from a vessel with the aid of
series of the type of Chaplygin. We recall the formulation of this
problem. There is sought a bounded solution of equation (3) in a
region of the (u, v) plane (see fig. 4) such that

V=0o0n0C, ¥=~3gon 0A'B (53)

We consider now a second solution V' of equation (3) defined
by the equation

&

Vo=V o+ 5

|0

(54)

This solution satisfies the Tollowing conditions of Tricomi:
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\
V' =0 on OC
Y' = 0 on OA? ? (55)
Vo= %—g—o——g‘-onA‘B'

We assume that this solution exists ard that feor o = 0, V'/AV satis-
fies the condition proven by Tricomi in the case of equation (])*

W gee-1l/3 _
80 - 3 - oo (56)

or in general that the sguare of the Tunction g(6) De integrable.
Then

[=e]

= —,

g{8) = > by sin 2v6 (57)
n=1
where
T
V= E—e—g (57&)
le o]
Lo
and > b“, converges.
n=1

Then according to Chaplygin the solution V' in the sector of
the circle O0OCA' will be

L C .
v o= > *n T00) gin 2v8 (58)
where
¢r.,(0)
Ap = ‘Eizay (53%a)

In particular on the arc CA?

*In the case of analytic Laval nozzleg this condition actually
holds.



NACA T No. 1155 31

[esd
b
V' (0, 8) = £(8) = _;_ 5= sin 206 (59)
s 1N
n=1

As the results obtained by Chaplygin have shown, the convergence of
the series (58) in the sector OCA' 1is assured. In the character-
istlic triangle CA'B' it is as yet impossible to eay anything as
regards the convergence of the series on the basgsis of these results.
We have shown, however, in another paper (reference 7) that for con-
tinuous variation of the Cauchy data on the arc of the transition
line (0 = 0) the solution of the equation of Tricomi in the corre-
sponding characteristic triangle varies continuously. From this it
follows that the problem of Tricomi gtated by us is solved in the
form of the series

sin 2vo (60)

where the coefficients a, are determined from the condition

Co
<  {lo(el] / N 0

> - —_ =908 _ 9
/o E;TB) oln 2v6 = 3 5 %} for -~ < 8 < 6 (81)
n=1

0 = 0(8) denoting the dependence of 0 on 8 along the arc of the
epicycloid.

Thug out problem under the assumptions made has been reduced to
the solution of an infinite system o). ordinary linear equations. It
may be attempted to solve this system approximately keeping only a
finite number of terms in the infinite sum (equation (61)) and requiring
only a correspondingly finite number of chosen values of 6.

Translation by S. Reias,
National Advisory Committee
for Aeronautics.
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